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In the long wavelength limit the current distribution in a thin

ABSTRACT

film superconducting strip transmission line can be described by an
inhomogeneous Fredholm equation of the second kind. By considéring a
fluxoid conservation derivation of this equation, physical iasight into
the structure of the kernel fcllows naturally. An approximate analytic
solution to the integral equation is derived for a specified range of
geometrical parameters commonly encountered in practice. The solution
is obtained by making use of the Liouville-Neumann method of successive
iterations and approximating the resulting series by a series involving
powers of a defined coupling factor. It is shown that the critical cur-
rent of the thin film superconducting strip transmission line, based on

the calculations in the paper and a critical cur

nt density hypothesis,

is underestimated by less than 5%..




INTRODUCTION . L

Several authors have indicated that superconductive computer components
which are constructed in the form of thin film strip transmission lines are ad-
vantageous from the standpoint of switching speed and miniaturization.1.6
Superconducting strip transmission lines are also useful in the transportation
of electrical information within a superconducting computer due to inhereat
negligible loss characteristics and high group veloc:ity.z’5 The latter is true
only if the film thickness is larger than, or comparable to, the London pene-.
tration depth. It has also been shown that if the film thickness is less than
the penetration depth the group velocity is appreciably decreased, making the
strip line useful for deﬁay line memory application.2 In all the above‘devices
it would be useful to be able to predict the total current which can be carried
by the strip line before it becomes normally conducting.

Several microscopic theories have been advanced which indicate that switch-
ing in a thin film is initiated by a critical current density.7 Cooper and
Marcus have shown, independently, that the problem of thin film switching is
complicated by the fact that the current density is not constant over the cross-
8,9

section of the film. Using a formal Green's function approach, and employing

the London current-field relation, Cooper derived the general inhomogeneous
(igggggglj§;zagzigbequation of the second kind describing the current density dis-
tribution in a single film. He also obtained a specialized equation for the case
in which the film thickness is less than or equal to the penetration depth - the
thin film case. .Marcus derived an identical equation by combining the Biot-Savart
law and London's equation, and obtained computer solutions for the thin film case.
The above methods can be used to derive an integral equation for the case of a

strip transmission line. Due to the complexity of the kernel, analytic solutions
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to the integral equation have not been found to date for eifher the single film
oxr strip line cases.

It is shown below that when the integral equation is derived for the strip
transmission line, using the concept of fluxoid conservation explicitly, certain
useful properties of the kernel can be readily deduced. These properties allow
the approximate evaluation of the Liouville-Neumann series for a range of geome-
tric parameters of practical interest. The analytic solution;ég:the current
density distribution in the strip line exhibits the same property of current
peaking at the film edges that Cooper and Marcus found for the single film. The
critical current of the system can be calculated from a knowledge of the current
density in the strip line and the critical current density obtained from micro-

scopic theory, and/or independent experimentation.
STATEMENT OF PROBLEM

Consider the transmission line structure in the fﬁrm of two parallel cylindri-
cal conductors shown in Fig. 1. For the sake of generality it is assumed, at first,
that the cross-section of each conductor is arbitrary. It is further assumed that
the wavelength of the fields propagating along the structure is much larger than
the transverse dimensions of the structure so that a static analysis is wvalid. It
is also assumed that the current density is in the z-direction and therefore is
only a function of x and‘f. The latter condition is necessary in order to satisfy
charge conservation for this quasi-static case (vJ ~0).

The derivation of the equation describing the current distribution in the
conductors is equallf valid for the cases in which: (1) the conductors are both

normally conducting, (2) one conductor. is superconducting and the other is normally



7N

conducting, and (3) both conductors are superconducting. It is advantageous to
first consider the classic case in which both cylinders are normally conducting.

Since J = ¢ E in both conductors, applying Faraday's law to the dotted con-
tour shown in Fig. 1 yields, |

J(¥)- J(o) = ou 4 \/ﬁ? H(r') + [ x dr'] (L
o dt o z

in rationalized mks units. T is the usual position vector in the x-y plane,
32 is a unit vector in the z-direction, and dr is a differential vector line
element of integration. H(T) is the magnetic field intensity generated by cur-
rent elements in both conductors. For the static case, the right-hand side of
Eq. (1) is zero and therefore the current distribution in each conductor is uni-
form. It is interesting to note that the distribution in conductor_l is uniform
even if conductor 2 does not have a uniform distribution (for instance if conductor
2 ?s a superconductof - this case 1is deécriﬁed below),'as long as conductor 1 is
normally conducting.

For the case in which both conductors are perfectly conducting (0 = =), the
right-hand side of Eq. (1) is still zero in the static situation. How-
ever, at some time in the past a transient existed so that it appears that infi-
nite current densities were generated. This unrealistic situation is alleviated
by stipulating that during the transient and afterwards the current flows in an
infinitely thin layer at the perfect conductor surfaces with a distribution such
that H is time independept everywhere inside the body of the conductor. Starting
from zero initial conditions it is evident that H is zero everywhere inside of
the cylinders. This is guarénteed by stipulating that there is no component of
H perpéndicular to the conductor's surface. Thus, if ?sl and ?s2 are the position

vectors denoting the surface of conductors 1 and 2 respectively and 3w(?s) is the



current per unit width at the conductor surface, then 3w (?s) is the solution

to the coupled integral equations
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While Eqs. (2) will not be solved here, some useful infomation can be. obtained
from their form and is summarized below;
(1) The magnetic flux through any imaginary surface in the interior of
either conductor is zero.
(2) The surface current distribution in conductor 1 is influenced by
the cross-sectional shape of conductor 1, conductor 2, and the
sgparation between them.
(3) The surface current distribution in conductor 1 is altered if conductor
2 does not carry the same total current as conductor 1. The distribution
in conductor 1 is altered by the presence of coanductor 2 even if con-
ductor 2 carries zero net current.
The static case in which 0 = « can be simulated by a dynamic situation in which
the skin depth is much less than the trapsverse dimensions of the conductor.
Consider the case in which both conductors are superconducting. In this situa-
tion E = uoﬁ-z gg in each of the cylinders,wheze B-l is the London penetration

depth. - Thus, instead of Eq. (1), it can be shown that
: r
%E [(JE) - J(o) - azf (') - (az xdr') 1 =0 (3) ,
o

The quantity within the brackets in Eq. (3) is the London fluxoid. Thus Eq. 3)

¢




expresses the principle of fluxoid conservation. Starting from the London zero
field initial conditions, it is seen that the fluxoid associated with this or
any other contour within the superconducting cylinder is zero. This is the exact
analog of the zero flux condition encountered in the case of perfect conductors.
Conditions 2 and 3 which were stated for perfect conductors remain the same for
superconductors except that the word "surface'" must be deleted. This is apparent
since the infinite current density situation associated with a time rate of change
of flux no longer exists in this case.

1t is convenient at this point to introduce the vector potential defined by

the equation

H=n_ x4 (4a)

All calculations will be carried out in the €oulomb gauge. Furthermore A is chosen
such that it is in the z-direction and thus is only a function of x and y. Thus
in the cylinders

HE) = ~ox T fJ(r’) fa | T -T' | 4T (4b)
SI+SII

where the integration in Eq. (4b) is over the cross-sectional areas of both con-

ductors. Using the identity

HT) - ('ézxdr)='%1—r %fJGW ta | T AT ar ()
SI+SII

and the fact that the fluxoid is zero yf%lds

2 | 2
IE) = J(o) - %r f IE in I35 +%r f IE") fa |Z-F']d%F"  (6a)
S_+§S S_+S B

I 11 I 711

Eq. (6a) is identical to that derived by Cooper and Marcus. The first two terms

on the right-hand side in Eq. (6a) are independent of T, therefore the curreat

density can be expressed as
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J(X) =¢C +% f JGE') 4o T - T o’ (6b)

~—
SI + SII

where C is an arbitrary constant determined by the total current.

Using the concepts introduced in the above derivation the following inter-
esting fact is apparent: The nonuniformity of the current dedsity in the film
@@ #30), T #‘0) is due to the magnetic flux crossing the plane surrounded
by the dotted contour shown in Fig. 1. For certain cross-sectional geometries
(such as the strip transmission line which will be discussed later) this flux
is small if both conductors carry equal and opposite currents. Thus, in these
cases, only small variations of the current density are expected. Furthermore,
in the case of a strip transmission line, this concept allows certain properties
of the kernel of the integral equation to be deduced so that a closed form solu-
tion to Eq. (6b) can be demonstrated.

Before proceeding to this solution, consider the case in which conductor 1
is superconducting and conductor 2 is normally conducting. As was shown previously,
the current density in the normal conductor is uniform, so that if 11,2 and Al,Z
are the net currents and cross-sectional areas of conductors 1 and 2 respectively,

Eq. (6a) becomes

2 ‘ 2
J(@) - J(o) -%—Tf.:(?') o | T -7 a5 - %—rf.r(?') n | T a%
S S

I I .
. D)
2 2
BpI B°I
..+ E;X; L/\ fn | T-T" | 4T - 3;;; \]p g | T | 47
SII SII

It is interesting to note that for this case the distribution in conductor 1 is
not influenced by the presence of conductor 2 for I, = 0. This was not true for the

case of two perfect conductors or two superconductors, as was shown above.



STRIP TRANSMISSION LINE OF RECTANGULAR CROSS SECTION

Consider the strip transmission line, shown in Fig. 2, consisting of two
parallel, infinitely long, superconducting thin films of rectangular cross -
section. Each is of width W and thickness d, and the two are separated by a
distance £. The parameters of the system.are choseq to be in a range of
practicaﬁ;inteiest denoted by .0001 < % < .01, (Bd) <1, and'é<§ <;%; A current,
Io, flows into the top film, and an equal but oppositely directed current flows

in the bottom film. For the case of the strip transmission line system described

above, Eq. (6b) becomes

r.w . d
) + 2 + 2
sy =e+fe | [ [ ety e ? « gy o ot s
¥ d
T2 T2 “
L (8a)
12 2t 2 2 %
JF JF J(x',y") fnj(x-x")" + (y-y")* |dx’ dy'{
W d
"7 7 i

Using the change of variables x' — - (x' + £) in the last integral on the right-

hand side in Eq. (8a), and noting that

J(x,y) i a -7 (‘x"z:Y) | (8b)

4 4 .4
7 <x<73 5 < x <

~la.

yields , .
oo, d
2 2 2 2
2 ! !
~ J(x,y) = C + B f f J(x',y') 4n LGex)” + (voy")*] dx' dy'  (9)
. br W
) -3 -

| e+ % + (y-y") 2|

~la.

Since(Bd < 1 it will be assumed that J does not vary appreciably in the x-direction

in the film. (This assumption will be examined more closely in the next section.)



Therefore J(x,y) = J(o,y) = J(y) and Eq. (9) becomes, after introducing the

dimensionless variable u = (2/W) y ,

CORECT) |
J@) = C + o JF J(u') K(u,u') du' (10a)
-1
where K(u,u') = K(Ju-u']) =

An

(d/W)2 + (U'U')Z"*‘ 2 (ﬁ—;w—g—'-> tan-l <ﬂw_'.\> +
1 d ,
(E)‘{(ﬂ -5 ) 4n
£ _ 4 £, d
wor ) [ (2w 1 (2Ete
d/w an u-u' an R . -

The kernel of the integral equation is an explicit function of the thickness

+

2
<2 é - %) + (u-u')zl' (£ +% ) zni(Z ;—ﬁ +% )2+ (U'U')Zi} *

(10b)

+

to width ratio'of the films, as well as the ratio of the separation distance to
the width. It was mentioned earlier that the nonuniformity of the current density
is due to the magnetic flux that crosses the area bounded by the dotted contour
shown in Fig. 1. Certainly line currents (henceforth referred to as source points
since the analysis is two dimensional) at all points in the cross section contri-
bute to the total flux, but due to the dimensions of the transmission line that
are being considered, contributions from anti-symmetric source points (in the two
films) distant from the observation point tend to cancel themselves out. It
should be expected therefore, that virtqally the entire net flux will be contri-
buted by source points that lie within some small distance from the observation
point (x,y). This distance should be on the order of £, the separation distance
betweed the two films. Thus the kernel should be sharply peaked about u = uﬁg’hnd,
based on the discussion above, it should be expected that the magnitude of the

kernel will be a monotonically decreasing function of (Iu-u']). Since £ > d and
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, the two dimensional kernel in Eq. §9) is negative definite.
By considering the process by which Eq. (10) is derived from Eq. (9), it is
apparent that the one-dimensional kernel in Eq. (10) is also negative deEinitel
A plot of the magnitude of the dimensiénless kernel versus (u-u') which
summarizes the conclusions in the above discussion, is shown in Fig. 3. . This
approximate sketch is supported by numerical analysis and shows that thevkernel
drops off to = % of its maximum value when |u-u'| = £/W, and that the bulk of
the area under the curve (95%) is contained in the range Iu-u'l: 0 - 10 %. Note
that approximately 50% of the area under the curve is contained in the range

Iu-u'lz 0 - % . It might be pointed out here that the approximations in this

and other sketches in the paper will not limit the accuracy of the final analytic
results. The sketches are given as an aid to the reader and will be useful in

determining the errors inherent in the anélytic approximations to follow.

@)% w/a)

Letting A = 8 Eq. (10a) can be rewritten as
+1
J(u) =C - kb/\ J(u')IK(Iu-u'l) du' (11)
-1

Equation (11) can be solved by the Liouville-Neumann method of successive itera-

tions: " Let J(o)(u) = C. Carrying through the integration in Eq. (11) yields

+1

1),y _ {
J (u) =C<1 - A K(lu-u I)
| “ fli '“’r.

Repeating the integration in Eq. (11), but now using J(l)(ud; yields

. +1 +1 +1
J(z)(u) = C-{l - KV/‘ lK(lu-u [)ldu + szf JF ‘K(lul-uzl)l IK([u-ull)
-1 1 L -1 -1

(12b)

du#} (12a)

duzdul}



Thus, after n repetitions it can be shown that

+1 +1 +1

1y = ¢ {. JF jc- J ‘K(l“m-l"“ml)""\

m-o

dum"'dul} (12¢)

Therefore the current density can be expressed as

J(u) = lim J(n)(u)

N = o

(124)

providedhthé'égries in Eq. (12c¢) converges as n — o The range ofmconvergence for
this series will be discussed later.

It is instructive to note that to zeroth order the current density, J(o)(u),
is assumed to be uniform over the width of the film. The first order correction
to this assumption, J(l)(u), is computed by considering the sum of the interactions

of all the source points in the films on a particular observation point. This sum,

+1
A f |x<}u-u‘ll>
-1

second order correction, J(Z)(u), is determined by considering the effect of all

d“l , will be referred to as the coupling factor A|K(u)|. The

the source points on a particular source point before obtaining the coupling factor.
The higher-order corrections are further expressions of the interactions of source

points with source points. The coupling factor can be evaluated and shown to be

1 1
M (u) = 11 + (k - 2) I1 - (k + 2) 11 ‘ + 212 + 12 l - 12 (13a)
C=1 C=2k-1 C=2k+1 C=1 C=2k-1 C=2k+1
where k = £/d and
2 2. u+l
(Cc @/w) + (ut+l) "] -1 u+l pan~} —u-l
= - - Sk and
Il/% £n - 4% 2C(d/W) < tan ca/m an caam |

[C (d/w) + (u-1)2]“'

2
I/ Q+dy w/a) /2y - ¢ (d/w){ ((1 +[cl"';;w} >can‘1 <EL:-L/JTJ> + (13b)

"1.+'——-—1'u ’ tan
\\ C d/w an c d/w C d/W




It is useful at this point to examine some of the properties of K(u). Figure
4 shows the absolute magnitude of the kernel plotted against u' for various values
of u. The area under each "u'" curve is IK‘u)l. Since the kernel is negative
definite, k(u) is also negative definite. Due to the narrow effective width of
the kernel (approximately 10(%) ), it is seen that K(u) is a weak function of *
u @Ku) =~ K(g@ in the central region of the film. When u is within 10 g%) of the
edge pf the film, K(u) is a strong function of u, and in fact it can be shown that
at Fhe edges |k(+1)]| = % |k(0)| + € where € is a small positive number. Ihese
observations are summarized in Fig. 5.

Physically this implies that since an observation point is only éffected by
those source points within a range aﬂx%), the observation points which are not
wiﬁhin 10 (é) of the édges are effectively in an infinitely wide film. From
Eq. (12d) and Fig. 5 it is seen that in this region J(u) is a weak function of u
(in an infinitely wide film J is independent of‘u). Howe;er,vwithin 10 (%) of the
edges, the observation point is affected by the presence of the edge of the film,
and J(u) is a strong function of u.

By considering a composite‘of Figs. 4 and 5 it is readily seen that

+1 .
JF K(ul) IK(] u-ull)l du1 s IK(o) K.(u) (14)
Thus 1in general
+1  +1 1 | nel
S Lo s s s = o eca]
- - -1 .

Equations (14) and (15) are very nearly true in the ceatral portion of the film.
The error in the above approximations, when u is withia 10 qg) of the film edges

will be discussed in the next section. Combining Eqs. (12d) and (15) yields

J(u) = c{l = NK(u) [ z -n*° (MK(O)l)n] } (16)
B <L ‘ . :
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1f k]K(O)]<1the series in,(16) converges absolutely, and the current density dis-

tribution can be expressed in closed form as

u 3
J(u) = C-{l - T'%4§f?%£7T_f (17)

Figure 6 indicates the range for the parameters d, W, and £ over which Eq. (16)
converges. If A|Kk(0)|>] the series does not converge and the Liouville-Neumann
method is not applicable. With the help of Fig. 5 an approximate normalized
sketch of J(u) versus u can be drawn (Fig. 7).

From Eq. (17) and the relation H = - 5-2(§7x J), the x-component of the

magnetic field can be shown to be

2 CA[K(l-u) - R(l+u)]
Bzw (1A ]k (o) | ]

H (u) =+ (18)

where the plus and minus signs refer to the top and bottom films respectively.
An approximate sketch of Eq. (18) is given in Fig. 8.
In principle, Ampere's law can be used to evaluate Hy(x,u). However for
the purposes of the discussion in the next section, only the form of Hy is necessary.
In the central portion of the films it can readily be seen that Hy is maximum at

X = - %, -( - %)and approximately zero at x = +.%, - L+ %).

ERROR ANALYSIS AND CONCLUSIONS

There are two sources of error in the analysis presented in the last section.
The first error was introduced when it was assumed that the current density does
not vary in the x-direction for the case (Bd) < 1 (one dimensional approximation).
The second error is associated with the approximations in Eqs. (14) and (15) (the
edge apbroximations).
A. One Dimensional Approximation
In order to evaluate this error it is convenient to use a self consistency

argument. In other words, the one dimensional solution, Eq. (17), is resubstituted
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into the two-dimensional integral equation, Eq.\;j9), in order to find the x-
direction variation of J. In practice it is more convenient to use the differv-
ential counterpart of Eq. (9), namely <72J.= BZJ. The x-direction variation is
then used to find an improved y-direction variation. For the purposes of this
paper it is not important if J is not uniform in the x-direction, as long as
the inclusion of this variation does not appreciably affect the y-direction
variation; If is shown below that this is, in fact, the case.

From the discussion of the magnetic field distribution in the last section
it is apparent that the largest x-direction variation of J occurs in the central
portion of the film. This then is the worst case region as far as an error in
the one-dimensional approximation is concerned. Using the self-consisteant pro-
cedure outlined above, it is apparent that in the central region of the top
)

. cosh B(% - d/2)
J(x,y) = J(x) = J(0)

0)

2

Nlo

film (Hy(x = +

- (19)
- cosh p(d/2)

It is seen that for (Bd) =1, J(-%) ~ (1.5) J(+§). Thus there can be an appreci-
able x-direction variation. However, when Eq. (19) is substituted into Eq. (9)

the improved y-variation integral equation is

+1
Ju) =C - a A \jp J(u')lK([u-u'l) du! (20a)
-1

where it can be shown that

sinh B(d/2) :
L <o <5060 (20b)

Thus, at worst, & = 1.04 (for the case Pd = 1) in the central region of the film.
If A —'a% the magnitude of J(u) in the central region is less than 2%, smaller
than that predicted by Eq. (17). As was pointed out previously, this error is

less near the film edges.



B. Edge Approximation
In order to evaluate the error in Egqs. (14) and (15) it is convenient to

note that due to the properties of the kerneléywhich.were discussed earlierg*
[ e

where y(u)> 0. By considering more carefully the composite of Figs. 4 and 5 used

(1 - 7] (21)

lx(lu u'i)i du' =

K(o)i}K(u)

to derive Eq. (14), it is seen that Y(u) is largest when u = * 1, in which case

7(¥1) = .25. 1In the central portion of the film ¥(u) =0. Thus it is seen that

at the film edges Eq. (l4) is not very accurate. However, if Eqs. (12d) and (21)

are used to derive a new expression for J(xl) it is found that

I ~ C{l-)\ ey | [1 - (75) A k(o) + ¢.69) WE|k(o)|3- (6?9}%‘1“5‘21)1[ [} (22)

Thus J(*1) is less than 5% smaller than that predicted by Eq. (17) for all param-
eter values under consideration. This error is less near the center of the film.
If it is assumed that the superconducting films switch to the normaily con-
ducting state when J at any point in the films exceeds a critical value J.» it is
apparent that the switching is initiated at the film edges. From the error
analysis it is clear that if the J(u) given in Eq. (17) is used to calculate a
critical current Ic (in.terms of Jc), this value for the critical current will
be smaller than the true critical current by less than 5%. It is noted that in
calculating IC the x~direction variation of J in the central portion of the film
should be taken into account. This is easily done by combining Eqs. (17) and (19)
as is done in the sample critical current calculation shown in the Appendix. JC
can be determined ?y making use of a microscopic theory,7 and/or by experimeﬁtally
determining Ic for a particular choice of parameters which lie in the range defined
above.  Once JC is known, Ic can be determined, using the above calculations for
any other set of parameters which lie in the range under consideration in this

paper.
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APPENDIX

The critical current, Ic, of a superconducting strip transmission line, fov
the case d/w << 1, can easily be calculated. For this case, the currvent is uni-
form over a very lavge percentage of the film so that from Eq. (19) it can be
shown that

I_ ~J(o) WETY) 2 sinh (8d/2) : (A-1)
The dimensionless variable u will not be used in this section. From Eq. (17),

lscth%QBII
and making use of the fact thath@w#&}}z-i {k(0)|, it can be seen that

J(y = %
J (o)

3
2 143 k()] (A-2)

where the variation of J in the x-direction at the film edges has been neglected
in line with the discussion in the last section. According to the critical cur-
rent density hypothesis Io = Ic when J (t W/2) = Jc. Using this hypothesis and

combining Eqs. (A~1) and (A-2) yields

I =3, WE™h 2 siah (834/2)/1 + 5 A [K(0)] (a-3)

The numerator of the right-hand side of Eq. (A-3) is the critical current, I

cu’

calculated on the assumption that the current density is uniform in the y-direction.

> (A-4)

From Fig. 6 it is evident that Eq. (A-4)°is satisfied for the case d/w'< .001.

1t can be seen from Eq. (13) that

1 N
Jamw<1 2N

—~

|

i
i

A

K (o)

[aN [N
£l

It is interesting to note that in this range M (o) is independent of (d/w).

Therefore,

(A-5)

s
N

|



For situations in which (d/W) is not much less than unity, Eqs. (A-1)
are not valid. 1In these cases the general expressions describing the

of current density in the films can be used to calculate the critical

and (A=4)
variation

curvent.
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